Abstract

Peroxynitrite-mediated oxidative chemistry is currently the subject of intense investigation owing to the toxic side effects associated with nitric oxide overproduction. Using direct electron spin resonance spectroscopy (ESR) at 37 degrees C, we observed that in human erythrocytes peroxynitrite induced a long-lived singlet signal at g = 2.004 arising from hemoglobin. This signal was detectable in oxygenated red blood cells and in purified oxyhemoglobin but significantly decreased after deoxygenation. The formation of the g = 2.004 radical required the presence of CO2 and pH values higher than the pKa of peroxynitrous acid (pKa = 6.8), indicating the involvement of a secondary oxidant formed in the interaction of ONOO- with CO2. The g = 2.004 radical yield leveled off at a 1:1 ratio between peroxynitrite and oxyhemoglobin, while CO-hemoglobin formed less radical and methemoglobin did not form the radical at all. These results suggest that the actual oxidant is or is derived from the ONOOCO2- adduct interacting with oxygenated FeII-heme. Spin trapping with 2-methyl-2-nitrosopropane (MNP) of the g = 2.004 radical and subsequent proteolytic digestion of the MNP/hemoglobin adduct revealed the trapping of a tyrosyl-centered radical(s). A similar long-lived unresolved g = 2.004 singlet signal is a common feature of methemoglobin/H2O2 and metmyoglobin/H2O2 systems. We show by spin trapping that these g = 2.004 signals generated by H2O2 also indicated trapping of radicals centered on tyrosine residues. Analysis of visible spectra of hemoglobin treated with peroxynitrite revealed that, in the presence of CO2, oxyhemoglobin was oxidized to a ferryl species, which rapidly decayed to lower iron oxidation states. The g = 2.004 radical may be an intermediate formed during ferrylhemoglobin decay. Our results describe a new pathway of peroxynitrite-dependent hemoglobin oxidation of dominating importance in CO2-containing biological systems and identify the g = 2.004 radical(s) formed in the process as tyrosyl radical(s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.