Abstract

IgG is an important defence protein. To exhibit optimum function the molecule must maintain its native structure. Peroxynitrite is a potent oxidizing and nitrating agent produced in vivo under pathophysiological conditions. It can oxidize and/or nitrate various amino acids causing changes in the structure and function of proteins. Such proteins may be involved in the pathogenesis of many inflammatory diseases, including rheumatoid arthritis. In the present work, peroxynitrite-induced structural changes in IgG have been studied by UV–visible, fluorescence, CD, FT-IR, DLS spectroscopy and DSC as well as by SDS–PAGE. Peroxynitrite-modified IgG exhibited hyperchromicity at 280 nm, quenching of tryptophan fluorescence, increase in ANS fluorescence, loss of β-sheet, shift in the positions of amide I and amide II bands, appearance of new peak in FT-IR, attachment of nitro residues and increase in melting temperature, compared to native IgG. Furthermore, peroxynitrite-modified IgG exhibited an additional peak at 420 nm, quenching in tyrosine fluorescence and enhancement in dityrosine fluorescence compared to native IgG. Generation of nitrotyrosine, dityrosine and nitrotryptophan was also observed in peroxynitrite-modified IgG. Gross structural changes in IgG caused by peroxynitrite and observed in vitro may favour autoantibodies induction in vivo under similar conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.