Abstract

Synthetic oligodeoxynucleotides containing secondary oxidative lesions at guanine nucleobases have been prepared by the site-specific oxidation by ONOO(-) of oligomers containing 8-oxoguanine (8-oxo-G). The oligomers have been tested for their stability to the standard hot piperidine treatment that is commonly used to uncover oxidized DNA lesions. While DNA containing oxaluric acid and oxazolone was cleaved at the site of modification under hot piperidine conditions, the corresponding cyanuric acid and 8-oxo-G lesions were resistant to piperidine. The recognition of the oxidative lesions by formamidopyrimidine glycosylase (Fpg enzyme) was examined in double-stranded versions of the synthetic oligodeoxynucleotides. Fpg efficiently excised 8-oxo-G and oxaluric acid and to some extent oxazolone, but not cyanuric acid. These data suggest that some DNA lesions formed via ONOO(-) exposures (cyanuric acid) are not repaired by Fpg and are not uncovered by assays based on piperidine cleavage at the site of lesion. Our results indicate that cryptic secondary and tertiary oxidation products arising from 8-oxo-G may contribute to the overall mutational spectra arising from oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.