Abstract

The threaten of ubiquitous antibiotics to human and ecosystem makes it urgent to seek efficient treatment technologies. Peroxymonosulfate (PMS)-based advanced oxidation processes have revealed wide prospects for wastewater treatment via controllable PMS activation for desired ROS generation. Herein, a novel TiO2 photoelectrode decorated with atomically distributed Mn (SA-MnTiO2) was designed via a modified molten salt method (MSM) for photo-electro-catalytic (PEC) activation of PMS. The electron transfer in reduction-/oxidation-state Mn(II)/Mn(III)/Mn(IV) cycles facilitated the cleavage of intramolecular O–O bonds in PMS to preferentially generate hydroxyl radical (HO•). Almost complete degradation of norfloxacin (NOR) was occurred with optimal SA-Mn0.6TiO2 within 15 ​min, exhibiting high turnover frequency (0.066 min−1). Around 74.8% of total organic carbon was eliminated with a low specific energy consumption of 0.94 ​kW ​h/g. The key operational parameters during actual wastewater treatment were inspected for SA-Mn0.6TiO2/PMS system, suggesting the satisfactory stability for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.