Abstract

Nonradical species with great resistance to interference have shown great advantages in complex wastewater treatment. Herein, a novel system constructed by biodegradable tetrakis-(4-carboxyphenyl)-porphyrinatoiron(III) (FeIII-TCPP) and peroxymonosulfate (PMS) was proposed for facile decontamination. Nonradical pathway is observed in FeIII-TCPP/PMS, where 1O2 and high-valent iron-oxo species play dominant roles. The genres and valence of high-valent iron-oxo species, including iron(IV)-oxo porphyrin radical-cationic species [OFeIV-TCPP•+] and iron(IV)-hydroxide species [FeIV-TCPP(OH)], are ascertained, along with their generation mechanism. The axial ligand on the iron axial site affects the ground spin state of FeIII-TCPP, further influencing the thermodynamic reaction pathway of active species. With trace catalyst in micromoles, FeIII-TCPP exhibits high efficiency by degrading bisphenol S (BPS) completely within 5 min, while Co2+/PMS can only achieve a maximum of 26.2% under identical condition. Beneficial from nonradical pathways, FeIII-TCPP/PMS demonstrates a wide pH range of 3–10 and exhibits minimal sensitivity to interference of concomitant materials. BPS is primarily eliminated through β-scission and hydroxylation. Specifically, 1O2 electrophilically attacks the C–S bond of BPS, while high-valent iron-oxo species interacts with BPS through an oxygen-bound mechanism. This study provides novel insights into efficient activation of PMS by iron porphyrin, enabling the removal of refractory pollutants through nonradical pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call