Abstract
Cobalt-based catalysts have been widely explored in the degradation of organic pollutants based on peroxymonosulfate (PMS) activation. Herein, we report an MXene nano-Co3O4 co-catalyst enriched with oxygen vacancies (Ov) and steadily fixed in nickel foam (NF) plates, which is used as an efficient and stable PMS activator for the removal of 1,4-dioxane (1,4-D). Ti originating from MXene was doped into the Co3O4 crystal, generating large amounts of Ov, which could provide more active sites to enhance PMS activation and facilitate the transformation of Co2+ and Co3+, causing a high stability. As a result, the 1,4-D removal efficiency of the NF/MXene-Co3O4/PMS system (kapp: 2.41 min−1) was about four times higher than that of the NF/Co3O4/PMS system (kapp: 0.62 min−1). In addition, singlet oxygen was the predominant reactive oxygen species. Notably, the 1,4-D removal of the NF/MXene-Co3O4/PMS system was over 95% after 20 h operation in the single-pass filtration mode with only 3.72% accumulative Co leaching, showing excellent stability and reusability of NF/MXene-Co3O4. This work provides a defect engineering strategy to design a robust and stable catalytic system for water treatment, which expands the application of MXene in the field of environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.