Abstract

Graphite carbon nitride (g-C3N4) has been employed as an emerging metal-free catalyst in heterogeneous catalysis. However, the catalyst has a poor activation property for peroxymonosulfate (PMS). In this study, Bi-Fe oxide co-doped g-C3N4 (Bi@Fe/CN) was synthesized for PMS activation to degrade sulfamethoxazole (SMX). In particular, Bi@Fe/CN-3 presented remarkable catalytic performance with 99.7% removal of SMX within 60 min in the PMS system. Additionally, Bi@Fe/CN-3 presented good stability and recyclability through the cycling experiments. Moreover, it was shown that free radicals (O2•−, •OH, and SO4•−) and non-free radicals (1O2) were the primary active species in the Bi@Fe/CN-3/PMS system. Bi, Fe, and surface lattice oxygen were confirmed to be the main contributors to the active species. This work elucidates the mechanism of activation of PMS by Bi@Fe/CN-3, which is beneficial to promote the application of bimetallic oxide-modified g-C3N4/PMS systems in wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.