Abstract

Antibiotic sulfamethoxazole (SMX) has been commonly found in various water matrices, therefore effective decontamination method is urgently needed. Metal-free pristine coconut-shell-derived biochar (CSBC), synthesized by thermochemical conversion at 700 °C, was used for activating peroxymonosulfate (PMS), an oxidant, to degrade SMX, a sulfonamide antibiotic, in water. SMX degradation, maximized at 0.05 mM concentration, was 85% in 30 min at pH 5.0 in the presence of 150 mg L−1 of CSBC. Remarkably, SMX removal reached 99% in a chloride-rich CSBC/PMS system. SMX degradation was mainly attributed to the role of CSBC in enhancing PMS activation to produce combined radical (SO4•−/HO•) and nonradical (1O2) reaction pathways. The most abundant genus in the CSBC/PMS system was Methylotenera, which belonged to the Proteobacteria phylum. Thus, from a perspective of biowaste-to-resource recycling and circular bioeconomy view point, CSBC is a potential catalytic activator of PMS for the removal of sulfonamide antibiotics from aqueous environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.