Abstract
Past work has shown that the extracellular manganese-dependent peroxidases (MnPs) of ligninolytic fungi degrade the principal non-phenolic structures of lignin when they peroxidize unsaturated fatty acids. This reaction is likely to be relevant to ligninolysis in sound wood, where enzymes cannot penetrate, only if it employs a small, diffusible lipid radical as the proximal oxidant of lignin. Here we show that a non-phenolic β- O-4-linked lignin model dimer was oxidized to products indicative of hydrogen abstraction and electron transfer by three different peroxyl radical-generating systems: (a) MnP/Mn(II)/linoleic acid, (b) arachidonic acid in which peroxidation was initiated by a small amount of H 2O 2/Fe(II), and (c) the thermolysis in air of either 4,4′-azobis(4-cyanovaleric acid) or 2,2′-azobis(2-methylpropionamidine) dihydrochloride. Some quantitative differences in the product distributions were found, but these were attributable to the presence of electron-withdrawing substituents on the peroxyl radicals derived from azo precursors. Our results introduce a new hypothesis: that biogenic peroxyl radicals may be agents of lignin biodegradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.