Abstract
Ozonolysis of α-pinene, C10H16, and other monoterpenes is considered to be one of the important chemical process in the atmosphere leading to condensable vapors, which are relevant to aerosol formation and, finally, for Earth's radiation budget. The formation of peroxy (RO2) radicals, O,O-C10H15(O2)xO2 with x = 0-3, and closed-shell products has been probed from the ozonolysis of α-pinene for close to atmospheric reaction conditions. (The "O,O" in the chemical formulas indicates the two carbonyl groups formed in the ozonolysis.) An additional series of RO2 radicals, O,O-C10H15O(O2)yO2 with y = 1-3, emerged in the presence of NO additions of (1.7-50) × 109 molecules cm-3, whose formation can be explained via different processes starting from alkoxy (RO) radicals, such as the RO-driven autoxidation. The main closed-shell product is a substance with the composition C10H16O3, probably pinonic acid, obtained with a molar yield (lower limit) of 0.26 independent of NO. Total molar product yields accounted for up to 0.71 indicating reasonable detection sensitivity of the analytical technique applied. For the isomeric O,O-C10H15O2 radicals, an average rate coefficient k(RO2 + NO) = (1.5 ± 0.3) × 10-11 cm3 molecule-1 s-1 at 295 ± 2 K was determined. Product analysis showed a lowering in the formation of highly oxygenated organic molecules (HOMs) by a factor of ∼2.2 when adding 5 × 1010 molecules cm-3 of NO. The comparison with former results revealed that total HOM suppression by NO in the α-pinene ozonolysis is slightly stronger than in the OH + α-pinene reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.