Abstract

The uranium(VI) peroxo complexes containing Mannich base ligands having composition [UO(O2)L-L(NO3)2] {where L-L = morpholinobenzyl acetamide (MBA), piperidinobenzyl acetamide (PBA), morpholinobenzyl benzamide (MBB), piperidinobenzyl benzamide (PBB), morpholinomethyl benzamide (MMB), piperidinomethyl benzamide (PMB), morpholinobenzyl formamide (MBF)}, piperidinobenzyl formamide (PBF) are reported. In a typical reaction UO2(NO3)2 · 6H2O (1 mmol, 0.502 g) was dissolved in methanol. An equimolar (1 mmol) methanolic solution (30 mL) of the ligand (Mannich bases) was added to a solution of uranyl nitrate followed by addition of potassium hydroxide (KOH) (2 mmol, 0.1122 g). The solution was refluxed for 15 min and then 10 mL of 30% hydrogen peroxide (H2O2) was added dropwise and was refluxed for an additional 1 h. The synthesized complexes have been characterized by various physico-chemical techniques, viz. elemental analysis, molar conductivity, magnetic susceptibility measurements, infra red, electronic, mass spectral and TGA/DTA studies. These studies revealed that the synthesized complexes are non-electrolytic and diamagnetic in nature. The ligands are bound to metal in a bidentate mode through carbonyl oxygen and the ring nitrogen. Thermal analysis result provides conclusive evidence for the absence of water molecule in the complexes. Mass spectra confirm the molecular mass of the complexes. Antibacterial activity of complexes revealed enhanced activity of complexes as compared to corresponding free ligands. Molecular modeling suggests pentagonal bipyramidal structure for complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.