Abstract

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a ligand-activated, nuclear transcription factor that regulates genes involved in lipid and glucose metabolism, inflammation, and other pathways. The hematopoietic growth factor, granulocyte macrophage colony-stimulating factor (GM-CSF), is essential for lung homeostasis and is thought to regulate surfactant clearance, but mechanisms involved are unknown. GM-CSF is reported to stimulate PPAR-gamma, but the activation status of PPAR-gamma in human alveolar macrophages has not been defined. In pulmonary alveolar proteinosis (PAP), a rare interstitial lung disease, surfactant accumulates in alveolar airspaces, resident macrophages become engorged with lipoproteinaceous material, and GM-CSF deficiency is strongly implicated in pathogenesis. Here we show that PPAR-gamma mRNA and protein are highly expressed in alveolar macrophages of healthy control subjects but severely deficient in PAP in a cell-specific manner. Further, we show that the PPAR-gamma-regulated lipid scavenger receptor, CD36, is also deficient in PAP. PPAR-gamma and CD36 deficiency are not intrinsic to PAP alveolar macrophages, but can be upregulated by GM-CSF therapy. Moreover, GM-CSF treatment of patients with PAP fully restores PPAR-gamma to healthy control levels. Based upon these novel findings, we hypothesize that GM-CSF regulates lung homeostasis via PPAR-gamma-dependent pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.