Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists reduce voluntary ethanol (EtOH) consumption in rat models and are promising therapeutics in the treatment for drug addictions. We studied the effects of different classes of PPAR agonists on chronic EtOH intake and preference in mice with a genetic predisposition for high alcohol consumption and then examined human genomewide association data for polymorphisms in PPAR genes in alcohol-dependent subjects. Two different behavioral tests were used to measure intake of 15% EtOH in C57BL/6J male mice: 24-hour 2-bottle choice and limited access (3-hour) 2-bottle choice, drinking in the dark. We measured the effects of pioglitazone (10 and 30mg/kg), fenofibrate (50 and 150mg/kg), GW0742 (10mg/kg), tesaglitazar (1.5mg/kg), and bezafibrate (25 and 75mg/kg) on EtOH intake and preference. Fenofibric acid, the active metabolite of fenofibrate, was quantified in mouse plasma, liver, and brain by liquid chromatography tandem mass spectrometry. Data from a human genome-wide association study (GWAS) completed in the Collaborative Study on the Genetics of Alcoholism (COGA) were then used to analyze the association of single nucleotide polymorphisms (SNPs) in different PPAR genes (PPARA, PPARD, PPARG, and PPARGC1A) with 2 phenotypes: DSM-IV alcohol dependence (AD) and the DSM-IV criterion of withdrawal. Activation of 2 isoforms of PPARs, α and γ, reduced EtOH intake and preference in the 2 different consumption tests in mice. However, a selective PPARδ agonist or a pan agonist for all 3 PPAR isoforms did not decrease EtOH consumption. Fenofibric acid, the active metabolite of the PPARα agonist fenofibrate, was detected in liver, plasma, and brain after 1 or 8days of oral treatment. The GWAS from COGA supported an association of SNPs in PPARA and PPARG with alcohol withdrawal and PPARGC1A with AD but found no association for PPARD with either phenotype. We provide convergent evidence using both mouse and human data for specific PPARs in alcohol action. Reduced EtOH intake in mice and the genetic association between AD or withdrawal in humans highlight the potential for repurposing FDA-approved PPARα or PPARγ agonists for the treatment of AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.