Abstract

Peroxisome proliferator-activated receptors (PPARs) are lipid-sensing nuclear receptors that have been implicated in multiple physiologic processes including cancer. Here, we determine that PPARdelta induces cell proliferation through a novel cyclin E1-dependent mechanism and is up-regulated in many human thyroid tumors. The expression of PPARdelta was induced coordinately with proliferation in primary human thyroid cells by the activation of serum, thyroid-stimulating hormone/cyclic AMP, or epidermal growth factor/mitogen-activated protein kinase mitogenic signaling pathways. Engineered overexpression of PPARdelta increased thyroid cell number, the incorporation of bromodeoxyuridine, and the phosphorylation of retinoblastoma protein by 40% to 45% in just 2 days, one usual cell population doubling. The synthetic PPARdelta agonist GW501516 augmented these PPARdelta proliferation effects in a dose-dependent manner. Overexpression of PPARdelta increased cyclin E1 protein by 9-fold, whereas knockdown of PPARdelta by small inhibitory RNA reduced both cyclin E1 protein and cell proliferation by 2-fold. Induction of proliferation by PPARdelta was abrogated by knockdown of cyclin E1 by small inhibitory RNA in primary thyroid cells and by knockout of cyclin E1 in mouse embryo fibroblasts, confirming a cyclin E1 dependence for this PPARdelta pathway. In addition, the mean expression of native PPARdelta was increased by 2-fold to 5-fold (P < 0.0001) and correlated with that of the in situ proliferation marker Ki67 (R = 0.8571; P = 0.02381) in six different classes of benign and malignant human thyroid tumors. Our experiments identify a PPARdelta mechanism that induces cell proliferation through cyclin E1 and is regulated by growth factor and lipid signals. The data argue for systematic investigation of PPARdelta antagonists as antineoplastic agents and implicate altered PPARdelta-cyclin E1 signaling in thyroid and other carcinomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.