Abstract

The mobilization of cholesterol from intracellular pools to the plasma membrane is a determinant that governs its availability for efflux to extracellular acceptors. NPC1 and NPC2 are proteins localized in the late endosome and control cholesterol transport from the lysosome to the plasma membrane. Here, we report that NPC1 and NPC2 gene expression is induced by oxidized LDL (OxLDL) in human macrophages. Because OxLDLs contain natural activators of peroxisome proliferator-activated receptor alpha (PPARalpha), a fatty acid-activated nuclear receptor, the regulation of NPC1 and NPC2 by PPARalpha and the consequences on cholesterol trafficking were further studied. NPC1 and NPC2 expression is induced by synthetic PPARalpha ligands in human macrophages. Furthermore, PPARalpha activation leads to an enrichment of cholesterol in the plasma membrane. By contrast, incubation with progesterone, which blocks postlysosomal cholesterol trafficking, as well as NPC1 and NPC2 mRNA depletion using small interfering RNA, abolished ABCA1-dependent cholesterol efflux induced by PPARalpha activators. These observations identify a novel regulatory role for PPARalpha in the control of cholesterol availability for efflux that, associated with its ability to inhibit cholesterol esterification and to stimulate ABCA1 and scavenger receptor class B type I expression, may contribute to the stimulation of reverse cholesterol transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.