Abstract

Simple SummaryAs of now, the Next Generation Sequencing (NGS) analysis has not been utilized to identify biological processes and signaling pathways that are regulated in the boar postnatal testes. Our prior studies revealed that the peroxisome proliferator-activated receptor (PPAR) and G-protein coupled estrogen receptor (GPER) were significant for the morpho-functional status of testicular cells. Here, the pharmacological blockage of PPARα, PPARγ or GPER was performed in ex vivo immature boar testes. The NGS results showed 382 transcripts with an altered expression. The blockage by the PPARγ antagonist markedly affected biological processes such as: drug metabolism (genes: Ctsh, Duox2, Atp1b1, Acss2, Pkd2, Aldh2, Hbb, Sdhd, Cox3, Nd4, Nd5, Cytb, Cbr1, and Pid1), adhesion (genes: Plpp3, Anxa1, Atp1b1, S100a8, Cd93, Ephb4, Vsir, Cldn11, Gpc4, Fermt3, Dusp26, Sox9, and Cdh5) and tube development (genes: Ctsh, Mmp14, Dll4, Anxa1, Ephb4, Pkd2, Angptl4, Robo4, Sox9, Hikeshi, Ing2, Loc100738836, and Rarres2), as well as the Notch signaling pathway. This was not the case for the PPARα or GPER antagonists. Our observations suggested that PPARγ may be the principal player in the management of the development and function of boar testes during the early postnatal window. Moreover, due to a highly similar porcine gene expression pattern to human homologues genes, our results can be used to understand both animal and human testes physiology and to predict or treat pathological processes.Porcine tissue gene expression is highly similar to the expression of homologous genes in humans. Based on this fact, the studies on porcine tissues can be employed to understand human physiology and to predict or treat diseases. Our prior studies clearly showed that there was a regulatory partnership of the peroxisome proliferator-activated receptor (PPAR) and the G-protein coupled membrane estrogen receptor (GPER) that relied upon the tumorigenesis of human and mouse testicular interstitial cells, as well as the PPAR-estrogen related receptor and GPER–xenoestrogen relationships which affected the functional status of immature boar testes. The main objective of this study was to identify the biological processes and signaling pathways governed by PPARα, PPARγ and GPER in the immature testes of seven-day-old boars after pharmacological receptor ligand treatment. Boar testicular tissues were cultured in an organotypic system with the respective PPARα, PPARγ or GPER antagonists. To evaluate the effect of the individual receptor deprivation in testicular tissue on global gene expression, Next Generation Sequencing was performed. Bioinformatic analysis revealed 382 transcripts with altered expression. While tissues treated with PPARα or GPER antagonists showed little significance in the enrichment analysis, the antagonists challenged with the PPARγ antagonist displayed significant alterations in biological processes such as: drug metabolism, adhesion and tubule development. Diverse disruption in the Notch signaling pathway was also observed. The findings of our study proposed that neither PPARα nor GPER, but PPARγ alone seemed to be the main player in the regulation of boar testes functioning during early the postnatal developmental window.

Highlights

  • Pigs provide important models for biomedical research due to sharing with humans many aspects of organ physiology, biochemistry, pathology and pharmacology

  • Only a cell-permeable, chloro-nitro-benzamido compound with potent, specific, irreversible, and high-affinity antagonistic properties to PPARγ affected a significant number of genes involved in the important biological pathways in immature boar testes

  • The results obtained from testes treated with PPARα or G-protein coupled membrane estrogen receptor (GPER) antagonists showed a little to non-statistical significance after the functional enrichment of the gene lists

Read more

Summary

Introduction

Pigs provide important models for biomedical research due to sharing with humans many aspects of organ physiology, biochemistry, pathology and pharmacology. Studies by Wernersson et al [1], demonstrated that, in pigs and humans, the number of substitutions per site separating a pair of homologous DNA sequences is very high in comparison to the common ancestral sequence in mice and humans. Hornshøj et al [2], used 20,000 porcine transcript cDNA microarrays confirmed that the gene expression pattern in porcine tissues was comparable to that of homologous human ones. Pig-specific cDNA microarrays are widely available for the screening of genes involved in specific biological processes underlying the physiology and diseases of individuals [3]. It is expected that in the coming decades the pig industry will increase applied genetic selection through the determination and use of specific markers that are directly supported by effective artificial insemination technique

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call