Abstract
In contrast to the well-established roles of PPARγ and PPARα in lipid metabolism, little is known for PPARδ in this process. We show here that targeted activation of PPARδ in adipose tissue specifically induces expression of genes required for fatty acid oxidation and energy dissipation, which in turn leads to improved lipid profiles and reduced adiposity. Importantly, these animals are completely resistant to both high-fat diet-induced and genetically predisposed ( Lepr db/db ) obesity. As predicted, acute treatment of Lepr db/db mice with a PPARδ agonist depletes lipid accumulation. In parallel, PPARδ-deficient mice challenged with high-fat diet show reduced energy uncoupling and are prone to obesity. In vitro, activation of PPARδ in adipocytes and skeletal muscle cells promotes fatty acid oxidation and utilization. Our findings suggest that PPARδ serves as a widespread regulator of fat burning and identify PPARδ as a potential target in treatment of obesity and its associated disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.