Abstract
Peroxisomes are ubiquitous organelles of eukaryotic cells that fulfill a variety of biochemical functions, including beta-oxidation of fatty acids. Here, we report that an ortholog of the Saccharomyces cerevisiae peroxisome biogenesis gene PEX13 is required for pathogenicity of Colletotrichum orbiculare. CoPEX13 was identified by screening random insertional mutants for deficiency in fatty acid utilization. Targeted knockout mutants of CoPEX13 were unable to utilize fatty acids as a carbon source. Expression analysis using green fluorescent protein fused to the peroxisomal targeting signals PTS1 and PTS2 revealed that the import machinery for peroxisomal matrix proteins was impaired in copex13 mutants. Appressoria formed by the copex13 mutants were defective in both melanization and penetration ability on host plants, had thin cell walls, and lacked peroxisomes. Moreover, the concentration of intracellular glycerol was lower in copex13 appressoria than those of the wild type. These findings indicate that fatty acid oxidation in peroxisomes is required not only for appressorium melanization but also for cell wall biogenesis and metabolic processes involved in turgor generation, all of which are essential for appressorium penetration ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.