Abstract

L-Pipecolic acid, a cyclic imino acid produced during the degradation of lysine, accumulates in body fluids of infants with the generalized peroxisomal disorders, including Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Peroxisome-enriched fractions from normal human liver oxidized L-[3H]pipecolic acid to alpha-[3H]aminoadipic acid (AAA). When human liver organelles were separated on a Percoll gradient, L-[3H]pipecolic acid oxidation activity (as measured by [3H]AAA formation) most closely segregated with the peroxisomal marker, catalase, and was not associated with the mitochondria. L-Pipecolic acid oxidation was not inhibited by antimycin A and rotenone and produced H2O2, consistent with its involving a peroxisomal oxidase. We measured L-pipecolic acid oxidation in liver specimens from patients with peroxisomal disorders. While liver homogenates from adult (n = 5) and infant (n = 10) controls formed 47.1 +/- 6.6 and 48.3 +/- 10.0 pmol AAA/mg protein/h, respectively, Zellweger syndrome livers (n = 8) formed only 1.7 +/- 0.3 pmol AAA/mg protein/h. L-pipecolic acid oxidation in normal infant livers was low at birth and increased with age, but Zellweger syndrome livers showed little activity at any age. Thus, the high circulating levels of L-pipecolic acid in Zellweger syndrome probably result from defective peroxisomal oxidation of L-pipecolic acid to AAA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.