Abstract
gamma-Decalactone is a peachy aroma compound resulting from the peroxisomal beta-oxidation of ricinoleic acid by yeasts. The expression levels of acyl-CoA oxidase (gene deletion) and 3-ketoacyl-CoA thiolase activities (gene amplification on replicative plasmids) were modified in the yeast Yarrowia lipolytica. The effects of these modifications on beta-oxidation were measured. Overexpression of thiolase activity did not have any effect on the overall beta-oxidation activity. The disruption of one of the acyl-CoA oxidase genes resulted in an enhanced activity. The enhancement led to an increase of overall beta-oxidation activity but reduced the gamma-decalactone production rates. This seemed to indicate a non-rate-limiting role for beta-oxidation in the biotransformation of ricinoleic acid to gamma-decalactone by the yeast Yarrowia lipolytica. All strains produced and then consumed gamma-decalactone. We checked the ability of the different strains to consume gamma-decalactone in a medium containing the lactone as sole carbon source. The consumption of the strain overexpressing acyl-CoA oxidase activity was higher than that of the wild-type strain. We concluded that peroxisomal beta-oxidation is certainly involved in gamma-decalactone catabolism by the yeast Y. lipolytica. The observed production rates probably depend on an equilibrium between production and consumption of the lactone.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.