Abstract

Enhanced oxidative stress contributes to the pathogenesis of diabetes and its complications. Peroxiredoxin 6 (PRDX6) is a key regulator of cellular redox balance, with the peculiar ability to neutralize peroxides, peroxynitrite, and phospholipid hydroperoxides. In the current study, we aimed to define the role of PRDX6 in the pathophysiology of type 2 diabetes (T2D) using PRDX6 knockout (-/-) mice. Glucose and insulin responses were evaluated respectively by intraperitoneal glucose and insulin tolerance tests. Peripheral insulin sensitivity was analyzed by euglycemic-hyperinsulinemic clamp, and molecular tools were used to investigate insulin signaling. Moreover, inflammatory and lipid parameters were evaluated. We demonstrated that PRDX6(-/-) mice developed a phenotype similar to early-stage T2D caused by both reduced glucose-dependent insulin secretion and increased insulin resistance. Impaired insulin signaling was present in PRDX6(-/-) mice, leading to reduction of muscle glucose uptake. Morphological and ultrastructural changes were observed in islets of Langerhans and livers of mutant animals, as well as altered plasma lipid profiles and inflammatory parameters. In conclusion, we demonstrated that PRDX6 is a key mediator of overt hyperglycemia in T2D glucose metabolism, opening new perspectives for targeted therapeutic strategies in diabetes care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.