Abstract

Members of the peroxiredoxin family are involved in a wide variety of physiological processes, including the ability to combat the effects of oxidative stress and immune responses, among others. Here, we cloned the cDNA of Procambarus clarkii Peroxiredoxin 1 (designated as PcPrx-1) and investigated its biological role in immune system functions in relation to microbial pathogens. The PcPrx-1 cDNA had 744 base pairs in an open reading frame that encoded 247 amino acid residues and contained a PRX_Typ2cys domain. The analysis of tissue specific expression patterns revealed that PcPrx-1 expression was ubiquitous in all tissues. In addition, the mRNA transcript of PcPrx-1 was found to be highest in the hepatopancreas. There was a significant upregulation of PcPrx-1 gene transcripts after exposure to LPS, PGN, and Poly I:C, but the transcription patterns were different after pathogen challenge. Double-stranded RNA was used to knockdown PcPrx-1, which resulted in a striking change in the expression of all the tested P. clarkii immune-associated genes, including lectin, Toll, cactus, chitinase, phospholipase, and sptzale. On the whole, these results suggest that PcPrx-1 is important to confer innate immunity against pathogens by governing the expression of critical transcripts that encode immune-associated genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.