Abstract

AbstractLow molecular weight polymers and copolymers of butadiene were grafted with styrene. The graft products were then crosslinked by using dicumyl peroxide as initiator. The optimum peroxide concentration was established (5 phr). Infrared analysis showed that the reactivity of 1,2‐vinyl and that of 1,4‐trans double bonds in styrene‐grafted polybutadiene is similar. Crosslinking of the graft product seems to involve a radical‐chain polymerization of double bonds in the polymer. The reaction rate is proportional to the square root of peroxide concentration and to the concentration of polymer double bonds. Activation energy, reaction heat, reaction order, and crosslinking efficiency were also determined from DSC measurements. No relation was found between the activation energy of crosslinking and the molecular weight of backbone polymer or density of grafting. Crosslinking efficiency was to 25–50 crosslinks per molecule of decomposed peroxide. The crosslinking efficiency for grafted butadiene–styrene copolymers is somewhat lower than that for grafted polybutadienes. From thermogravimetric measurements it was found that the crosslinked grafted polymers show lower resistance to thermal degradation than ungrafted polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call