Abstract

From the roots and root exudates of 3-week-old plants of alfalfa (Medicago sativa L.), anionic and cationic peroxidases differing in principal physicochemical and catalytic properties were isolated and purified. Main features of anionic peroxidases detected in the roots and root exudates were identical. Phenanthrene present in the soil used for alfalfa growing influenced the number of forms and activity of peroxidases in crude enzyme preparations but did not affect the properties of pure enzymes. In the presence of a synthetic mediator, purified peroxidases can oxidize phenanthrene and its derivatives, including potential microbial metabolites of polycyclic aromatic hydrocarbons (PAH). The fact that the enzymes excreted in root exudates in a purified form can oxidase PAH proves their participation in degradation of PAH and their microbial metabolites in alfalfa rhizosphere. These new data indicate that the processes of plant and microbial degradation of pollutants in the rhizosphere are coupled; they are relevant to understanding the molecular mechanisms of degradation of persistent pollutants by plant-microbial complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call