Abstract

Lignin, an important component of plant cell walls, is a polymer of monolignols derived from the phenylpropanoid pathway. Monolignols are oxidized in the cell wall by oxidative enzymes (peroxidases and/or laccases) to radicals, which then couple with the growing lignin polymer. We have investigated the characteristics of the polymerization reaction by producing lignin polymers in vitro using different oxidative enzymes and analyzing the structures formed with NMR. The ability of the enzymes to oxidize high-molecular-weight compounds was tested using cytochrome c as a substrate. The results support an idea that lignin structure is largely determined by the concentration ratios of the monolignol (coniferyl alcohol) and polymer radicals involved in the coupling reaction. High rate of the lignin polymer oxidation compared to monolignol oxidation leads to a natural-like structure. The high relative rate can be achieved by an open active site of the oxidative enzyme, close proximity of the enzyme with the polymeric substrate or simply by high enzymatic activity that consumes monolignols rapidly. Monolignols, which are oxidized efficiently, can be seen as competitive inhibitors of polymer oxidation. Our results indicate that, at least in a Norway spruce (Picea abies L. Karst.) cell culture, a group of apoplastic, polymer-oxidizing peroxidases bind to the lignin polymer and are responsible for production of natural-like lignin in cell suspension cultures in vivo, and also in vitro. The peroxidases bound to the extracellular lignin had the highest ability to bind to various cell wall polymers in vitro. Extracellular lignin contains pectin-type sugars, making them possible attachment points for these cationic peroxidases.

Highlights

  • Lignin is a complex, hydrophobic component in the plant cell wall of water-conducting vessels and tracheids, as well as support-giving sclerenchyma cells

  • We suggest that the extracellular lignin-bound fraction of the secreted suspension culture peroxidases is specialized in lignin polymerization and, more generally, that the concentration ratio of polymer and monomer radicals is a key factor that determines lignin structure

  • The Norway spruce tissue culture used in our study secretes proteins into the culture medium; part of these are bound to the extracellular lignin and can be extracted with a buffer containing 1 M NaCl

Read more

Summary

Introduction

Hydrophobic component in the plant cell wall of water-conducting vessels and tracheids, as well as support-giving sclerenchyma cells. It gives cell walls resilience against both mechanical stress and biological perils, and contributes to the calorific value of wood as a fuel. The radicals couple in muro to form the lignin polymer (reviewed by Vanholme et al, 2010; Wang et al, 2013). Both peroxidases and Abbreviations: DHP, dehydrogenation polymer; HRP, horseradish peroxidase; pI, isoelectric point; PMSF, phenylmethylsulfonyl fluoride

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.