Abstract

Pyrite FeS2 has been applied as a peroxidase due to its easy preparation and low cost. However, the low peroxidase-like (POD) activity limited its wide application. A hollow sphere-like composite (FeS2/SC-5.3%) composed of pyrite FeS2 and sulfur-doped hollow sphere-shaped carbon was synthesized by a facile solvothermal method, where the S-doped carbon was in situ formed during FeS2 formation. The synergistic action such as the defects at the carbon surface and the formation of S-C bonding improved the nanozyme activity. The S-C bonding was a bridge between the carbon and the Fe atom in FeS2, which enhanced the electron transfer between the Fe atom and the carbon and accelerated the conversion from Fe3+ to Fe2+. The optimum experimental conditions were obtained by the response surface methodology (RSM). The POD-like activity of FeS2/SC-5.3% was significantly improved compared to that of FeS2. The Michaelis-Menten constant (Km) of FeS2/SC-5.3% is 80 times lower than that of horseradish peroxidase (HRP, natural enzyme). FeS2/SC-5.3% can be used to detect cysteine (Cys) with a limit of detection (LOD) as small as 0.061 μM at room temperature in only 1 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.