Abstract

Peroxidases from horseradish roots (HRP) and soybean hulls (SBP) catalyze the efficient polymerization of a 4-kDa dimethylformamide (DMF)-soluble fraction of Mequininza (Spanish) lignite in 50% (v/v) DMF with an aqueous component consisting of acetate buffer, pH 5.0. Under these conditions, HRP and SBP catalyze the oxidation of free phenolic moieties in the coal matrix, thereby leading to oxidative polymerization of the low-molecular-weight coal polymers. The high fraction of nonphenolic aromatic moieties in coal inspired us to examine conditions whereby such coal components could also become oxidized. Oxidation of nonphenolic aromatic compounds was attempted using veratryl alcohol as a model substrate. SBP catalyzed the facile oxidation of veratryl alcohol at pH 50 Da coal fraction was achieved using SBP in 50% (v/v) DMF with an aqueous component adjusted to pH 2.2. Approximately 15% of the initial high-molecular-weight lignite fraction was depolymerized to polymers 4 Da in size. Hence, SBP is capable of catalyzing the depolymerization of coal in organic solvents, and this may have important ramifications in the generation of liquid fuels from coals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.