Abstract

Perovskite/silicon heterojunction tandem solar cells have developed rapidly in recent years, and their efficiency is enhanced from 13.7% to 29.1%. As is well known, the optical loss has a great influence on the efficiency. Due to the complex fabrication process of tandem solar cells, it is important to obtain high-performance tandems through optical simulation. In this paper, optical simulation methods are mainly summarized from two aspects: commercial software and self-built model. Then, the progress of optical simulation is analyzed in terms of reflection loss and parasitic absorption. Finally, what should be paid more attention to in the optical simulation of tandem solar cells is pointed out. The efficiency limit of perovskite/silicon heterojunction tandem solar cells can reach up to 40%, but there remains much room for improvement. The research on optical simulation will lay the foundation of developing the tandem solar cells.

Highlights

  • 图 2 (a) 基于 OPTOS 软件的光传播模拟过程 [31]; (b) 基 于 JCMsuite 的光伏建模过程 [32] Fig. 2. (a) Light spread process simulated by OPTOS[31]; (b) the optical model built by JCMsuite[32]

  • 图 5 (a) 使用 LiF 作减反层的电池结构 [71]; (b) LiF 作减反层的电池优化结果 [71]; (c) 使用 MgF2 作减反层的电池结构和优化结果 [72] Fig. 5. (a) Solar cell structure with LiF as anti-reflection coating[71]; (b) optimized result with LiF as anti-reflection coating[71]; (c) solar cell structure and optimization result with MgF2 as anti-reflection coating[72]

  • 4) (Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China) 5) (Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300072, China) ( Received 23 September 2020; revised manuscript received 14 October 2020 )

Read more

Summary

Back reflector

图 1 钙钛矿/硅叠层太阳电池 (a) 四端结构和 (b) 两端结构 [10]; (c) 钙钛矿和 (d) 晶硅吸收层的光学常数 [16,17] Fig. 1. (a) Four terminal structure and (b) two terminal structure[10] of the perovskite / silicon tandem solar cells; optical constants of (c) perovskite and (d) c-Si absorbers[16,17]. 2019 年, 澳大利 亚国立大学对钙钛矿/硅异质结叠层电池进行了外 量子效率 (external quantum efficiency, EQE) 模 拟, 并对钙钛矿层的厚度和带隙都进行了优化 [23]. 常见的软件模拟包 有 TCAD[24,25], FDTD[26], AFORS-HET[27], GenPro4[28,29], OPTOS[30], JCMsuite[22] 等. 图 2(a) 和图 2(b) 分别是基于 OPTOS 和 JCMsuite 软件的光学建模过程. 图 2 (a) 基于 OPTOS 软件的光传播模拟过程 [31]; (b) 基 于 JCMsuite 的光伏建模过程 [32] Fig. 2. (a) Light spread process simulated by OPTOS[31]; (b) the optical model built by JCMsuite[32]. 而自建模型可调整性 强, 能有效地指导实验, 有些机构通过自建模型方 法实现对叠层器件的模拟, 这种自建模型对叠层电 池的光学优化工作一般从材料的光学常数出发, 利 用材料的光学常数结合转换矩阵等方法计算出其 反射、透射曲线, 进而得出整体 EQE 吸收曲线 [47,48]. 通过 EQE 曲线以及各层材料吸收曲线对器件进行 光损耗分析, 进而根据分析结果调整电池中材料的 厚度、带隙等参数, 将器件的光吸收最大化.

ZnO NP
Drude model
Without LM foil
PCBM:PMMA
Spiro TTB
Bottom Total
Fully textured
Findings
For Rev
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call