Abstract

As compared with epitaxial semiconductor devices, two-dimensional (2D) heterostructures offer alternative facile platforms for many optoelectronic devices. Among them, photovoltaic based photodetectors can give fast response, while the photogate devices can lead to high responsivity. Here, we report a 2D photogate photodiode, which combines the benefits of 2D black phosphorus/MoS2 photodiodes with the emerging potential of perovskite, to achieve both fast response and high responsivity. This device architecture is constructed based on the fast photovoltaic operation together with the high-gain photogating effect. Under reverse bias condition, the device exhibits high responsivity (11 A/W), impressive detectivity (1.3 × 1012 Jones), fast response (150/240 μs), and low dark current (3 × 10-11 A). All these results are already much better in nearly all aspects of performance than the previously reported 2D photodiodes operating in reverse bias, achieving the optimal balance between all figure-of-merits. Importantly, with a zero bias, the device can also yield high detectivity (3 × 1011 Jones), ultrahigh light on/off ratio (3 × 107), and extremely high external quantum efficiency (80%). This device architecture thus has a promise for high-efficiency photodetection and photovoltaic energy conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call