Abstract

Ciprofloxacin (CIP) is a commonly found pharmaceutical in industrial and residential wastewater. This study aimed to synthesize and characterize a catalyst based on strontium ferrite of the perovskite-type (SrFeO3) to reduce CIP. The sol-gel method was employed to synthesize SrFeO3, resulting in a material with dense characteristics and uniform distribution of metallic species on the surface. Various approaches to pollutant removal were examined, including catalysis in the dark (PerCIP1), photocatalysis (PerCIP2), and a combination of darkness and light (PerCIP3). The optimized conditions for CIP treatment were a pH of 6, a pollutant concentration of 10 ppm, and a reaction time of 6 hours. Under these conditions, PerCIP1, PerCIP2, and PerCIP3 achieved removal efficiencies of 53%, 80%, and 75%, respectively. Analysis of the CIP degradation mechanism suggested a sequence involving an adsorption step, followed by the generation of reactive species and, ultimately, CIP oxidation. Furthermore, the catalyst exhibited excellent stability, maintaining its catalytic activity even after four reuse cycles without requiring a regeneration step. Phytotoxicity experiments indicated a reduced toxicity in the treated solution compared to the initial contaminant solution. In conclusion, the synthesized catalyst demonstrated promising characteristics for the aqueous treatment of CIP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.