Abstract
This paper contains the results of research on chemical-looping combustion (CLC). CLC is one of the most promising combustion technologies and has the main advantage of producing a concentrated CO2 stream, which is obtained after water condensation and without any energy penalty for CO2 separation. The objective of this work was to study the chemical-looping reaction performance of novel perovskite-type oxygen carriers. The Sr(Mn1−xNix)O3 family was tested for its suitability as an oxygen carrier in hydrogen (syngas component) combustion for power generation. Sr(Mn1−xNix)O3 perovskite-type oxides with x = 0, 0.2, 0.5, 0.8, and 1.0 were prepared. Thermogravimetric measurements were performed to investigate the oxidation/reduction of the obtained materials. Reactivity tests were performed under isothermal conditions during multiple redox cycles using a thermogravimetric analyzer (TGA). For the reduction reaction, 3% H2 in Ar was used, and air was used for the oxidation cycle. The effect of reaction temperature (600–800 °C) and the number of reducing/oxidizing cycles (up to 5 cycles) on the performance of the oxygen-carrier samples developed in this study were evaluated. The stability, oxygen transport capacity, and reaction rates were analyzed on the basis of thermogravimetric TG results. The Sr(Mn1−xNix)O3 oxides showed stable chemical-looping performance with rapid changes in their oxygen content (2–3 min) while maintaining their chemical properties. The cyclic redox reaction revealed that Sr(Mn1−xNix)O3 exhibits excellent structural stability and provides a continuous oxygen supply during redox reactions. Good oxygen capacity was maintained during the cycling hydrogen combustion tests. These new perovskite-type materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements and by surface area (BET), particle size distribution (PSD) and melting behavior analyses. The Sr(Mn1−xNix)O3 oxides exhibited high melting temperatures and small surface areas. The promising results obtained from chemical-looping combustion experiments indicate that the Sr(Mn1−xNix)O3 oxides are potentially useful oxygen carriers for chemical-looping combustion processes where hydrogen is one of the fuel components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.