Abstract
The effects of Mn substitution of LaMnxFe1−xO3 (x=0, 0.3, 0.5, 0.7, 1.0) on the oxidation activity and resistance to carbon formation for chemical-looping steam methane reforming (CL-SMR) were investigated. The desired crystalline perovskite phases were formed by transferring from the orthorhombic structure of LaFeO3 to rhombohedral lattice of LaMnO3 as the degree of Mn-doping increased. Manganese ions have a mixed state of Mn3+ and Mn4+ in the LaFe1−xMnxO3, meanwhile inducing the states of highly mixed character of Fe2+, Fe3+ and Fe4+ in iron ions. Substitution of Mn for Fe with proper value not only increases the lattice oxygen, which is conducive to the partial oxidation of CH4 to produce syngas, but also enhances the lattice oxygen mobility from the bulk to the surface of the oxygen carrier particles. Judging from the points of the redox reactivity, resistance to carbon formation and hydrogen generation capacity, the optimal range of the degree of Mn substitution is x=0.3–0.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.