Abstract

Transition metal oxides are promising candidates for thermoelectric applications, because they are stable at high temperature and because strong electronic correlations can generate large Seebeck coefficients, but their thermoelectric power factors are limited by the low electrical conductivity. We report transport measurements on Ca3Co4O9 films on various perovskite substrates and show that reversible incorporation of oxygen into SrTiO3 and LaAlO3 substrates activates a parallel conduction channel for p-type carriers, greatly enhancing the thermoelectric performance of the film-substrate system at temperatures above 450 °C. Thin-film structures that take advantage of both electronic correlations and the high oxygen mobility of transition metal oxides thus open up new perspectives for thermopower generation at high temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.