Abstract
Quantum Optics The development of many optical quantum technologies is dependent on the availability of solid-state single quantum emitters with near-perfect optical coherence. Light-emitting defects in diamond and quantum dots grown by molecular beam epitaxy have demonstrated transform-limited emission linewidths. However, they are limited in terms of production scalability and reproducibility between individual emitters. Utzat et al. now show that perovskite quantum dots can overcome these limitations and provide unprecedented versatility for the generation of indistinguishable single photons or entangled photon pairs for quantum information processing. Science , this issue p. [1068][1] [1]: /lookup/doi/10.1126/science.aau7392
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.