Abstract

Metal halide perovskite quantum dots, with high light-absorption coefficients and tunable electronic properties, have been widely studied as optoelectronic materials, but their applications in photocatalysis are hindered by their insufficient stability because of the oxidation and agglomeration under light, heat, and atmospheric conditions. To address this challenge, herein, we encapsulated CsPbBr3 nanocrystals into a stable iron-based metal-organic framework (MOF) with mesoporous cages (∼5.5 and 4.2 nm) via a sequential deposition route to obtain a perovskite-MOF composite material, CsPbBr3@PCN-333(Fe), in which CsPbBr3 nanocrystals were stabilized from aggregation or leaching by the confinement effect of MOF cages. The monodispersed CsPbBr3 nanocrystals (4-5 nm) within the MOF lattice were directly observed by transmission electron microscopy and corresponding mapping analysis and further confirmed by powder X-ray diffraction, infrared spectroscopy, and N2 adsorption characterizations. Density functional theory calculations further suggested a significant interfacial charge transfer from CsPbBr3 quantum dots to PCN-333(Fe), which is ideal for photocatalysis. The CsPbBr3@PCN-333(Fe) composite exhibited excellent and stable oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities in aprotic systems. Furthermore, CsPbBr3@PCN-333(Fe) composite worked as the synergistic photocathode in the photoassisted Li-O2 battery, where CsPbBr3 and PCN-333(Fe) acted as optical antennas and ORR/OER catalytic sites, respectively. The CsPbBr3@PCN-333(Fe) photocathode showed lower overpotential and better cycling stability compared to CsPbBr3 nanocrystals or PCN-333(Fe), highlighting the synergy between CsPbBr3 and PCN-333(Fe) in the composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call