Abstract
AbstractSeveral types of electrode materials have been developed for high–performance supercapacitors. Most of the relevant studies have focused on the discovery of new atomic structures and paid limited attention to the effect of heterostructures in supercapacitor electrodes, which has long hindered the fundamental understanding of the use of hybrid materials in supercapacitors. In this study, a novel heterostructure based on perovskite oxide (LaNiO3) nanosheets and polyazulene was synthesized. The as–prepared heterostructure–based supercapacitor exhibited a specific capacitance of up to 464 F g−1 at a high current density of 2 A g−1 in 1–ethyl–3–methylimidazolium tetrafluoroborate. In a symmetric supercapacitor, this heterostructure delivered an energy density of up to 56.4 Wh kg−1 at a power density of 1100 W kg−1. Both LaNiO3 and polyazulene contributed pseudocapacitance and dominated the performance. Unexpectedly, electric double–layer capacitance was found to contribute in this system. Density functional theory calculations indicated that the advantage of the high electrical conductivity of the heterostructure benefited the supercapacitor operation. Electrochemical quartz crystal microbalance analysis revealed that the fast ion flux and adsorption boosted performance. The high intrinsic electrical conductivity and improved stability make this heterostructure a promising electrode material candidate for supercapacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.