Abstract

Ba10Fe3Sb7Se24 was synthesized using a KBr flux at 850 °C (Crystal Data: orthorhombic, Cmc21, a = 9.3412(2) Å, b = 44.6666(10) Å, c = 12.5496(3) Å, V = 5236.2(2) Å3, and Z = 4). The compound adopts a new three-dimensional framework constructed by the layer to include Fe2Se6 dimers and FeSe4 tetrahedra in the linkage motifs of [Fe2SbSe10] and [FeSb6Se14], respectively. Alternatively, the all Sb-based polyhedra are assembled as a semiconducting, perovskite-like framework lacking an inversion center where these Fe-based magnetic units are trapped within the interstices. The strong antiferromagnetic interaction is revealed by a high Curie constant of -113 K, but the curvature of field-cooled and zero-field-cooled magnetic susceptibilities bifurcating at ∼19 K is observed. The critical temperature is well verified by a broad peak of χM″ signal showing a rapid increase below 19 K under an alternating current field. The Fe2Se6 dimer featuring distorted edge-sharing tetrahedra to induce the spin-canted antiferromagnetic ordering strongly dominates such magnetic ordering. Finally, a weak hysteresis loop is clearly observed at 2.0 K. This dilute magnetic selenide displays a direct bandgap at ∼1.54 eV, analyzed by the Tauc equation. Interestingly, the use of second-harmonic-generation temperature dependence shows a turning point at ∼20 ± 1 K, which precisely corresponds to the magnetic ordering temperature within the error bar, thereby demonstrating the versatility of the technique for probing magnetic phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call