Abstract

Control over the morphology and crystallinity of metal halide perovskite materials is of key importance to enable high-performance optoelectronics. Here, a simple yet effective template-free self-assembly synthesis of perovskite granular wires with ultrahigh photodetectivity (3.17 × 1015 Jones) is reported. The 1D self-assembly of perovskite grains is driven by differences in the surface interaction energies of the granular facets. The superb photodetecting performance originates from extremely low dark current engendered by energetic barriers featuring unique band-edge modulation along the long axis of wire. Flexible photodetector arrays, fabricated by selectively placing perovskite granular wires onto pre-patterned electrode arrays on a transparent polymer substrate, show independently addressable photonic signal mapping with remarkably high detectivity, photoconductive gain, and responsivity. The "self-assembled nanograin engineering" strategy developed in this study provides a viable method for the development of high-performance perovskite photodetectors and can be extended to other integrated optoelectronic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.