Abstract
One of the greatest problems in biomass gasification processes is the conditioning of the produced synthesis gas, which contains various contaminants, including tar and hydrogen sulfide. Nickel catalysts, designed for steam reforming of aliphatic hydrocarbons (natural gas and nafta), are usually deactivated by coke deposition and sulfur poisoning. In this work, nickel and/or manganese catalysts derived from perovskites were prepared by the citrate method and characterized by X-ray diffraction, N2 physisorption and temperature programmed reduction. The catalysts were evaluated in the steam reforming of toluene, used as tar model compound, in the absence of H2S at 700 °C and in the presence of 50 ppm H2S at 800 °C. LaNi0.5Mn0.5O3 catalyst showed higher activity and stability in the absence of H2S. LaMnO3 catalyst, although less active in the absence of H2S, showed increased stability in the presence of H2S, with conversion of about 60%. H2 production was only observed in the absence of H2S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.