Abstract

As an effort to further explore the possible complex oxide catalysts for methanol electrooxidation, a library of perovskites (ABO3; A = Ba, Ca, Sr, La; B = Fe, Ru) were synthesized and tested. A novel screening strategy, featuring energy-efficient and rapid solution combustion (SC) synthesis techniques in combination with a throughput catalyst activity testing method, was employed. It was demonstrated that most of these mixed-conductor complex perovskites with ruthenium on the B-site are promising candidates for the development of effective catalysts. A possible reaction pathway on the perovskite (e.g., ARuO3) surface is proposed in analogy to the well-established reaction mechanism of methanol oxidation on a Pt surface. Additional experiments by using ethanol and formic acid as fuels were conducted to give further insights on the proposed reaction pathway. Furthermore, composite perovskite−Pt compositions were also synthesized directly by the SC method for the design of multifunctional catalysts, where the optimum amount of noble metal was found to be ∼10 wt %. These novel catalysts, containing 4 times less platinum, display comparable apparent catalytic activity to standard Pt−Ru alloy. Structure and surface properties of these novel catalysts were also studied by using X-ray photoelectron spectroscopy and X-ray diffraction techniques. The above findings strongly suggest that the proposed approach for design of multifunctional catalysts is practical and effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.