Abstract

BackgroundWidespread use of intraoperative epicardial ultrasonography (ECUS) for quality assessment of coronary artery bypass graft anastomoses during coronary artery bypass grafting (CABG) has not occurred - presumably due to technological and practical challenges including the need to maintain stable and optimal acoustic contact between the ultrasound probe and the target without the risk of distorting the anastomosis. We investigated the feasibility of using a stabilizing device during ultrasound imaging of distal coronary bypass graft anastomoses in patients undergoing on-pump CABG. Imaging was performed in both the longitudinal and transverse planes.MethodsSingle-centre, observational prospective feasibility study among 51 patients undergoing elective, isolated on-pump CABG. Ultrasonography of peripheral coronary bypass anastomoses was performed using a stabilizing device upon which the ultrasound transducer was connected. Transit-time flow measurement (TTFM) was also performed. Descriptive statistical tests were used.ResultsLongitudinal and transverse images from the heel, middle and toe were obtained from 134 of 155 coronary anastomoses (86.5%). After the learning curve (15 patients), all six projections were obtained from 100 of 108 anastomoses scanned (93%). Failure to obtain images were typical due to a sequential curved graft with anastomoses that could not be contained in the straight cavity of the stabilizing device, echo artefacts from a Titanium clip located in the roof of the anastomoses, and challenges in interpreting the images during the learning curve. No complications were associated with the ECUS procedure. The combined ECUS and TTFM resulted in immediate revision of five peripheral anastomoses.ConclusionsPeroperative use of a stabilizing device during ultrasonography of coronary artery bypass anastomoses in on-pump surgery facilitates imaging and provides surgeons with non-deformed longitudinal and transverse images of all parts of the anastomoses in all coronary territories. Peroperative ECUS in addition to flow measurements has the potential to increase the likelihood of detecting technical errors in constructed anastomoses.Trial registrationThe study was registered on September 29, 2016, ClinicalTrials.gov ID: NCT02919124.

Highlights

  • Widespread use of intraoperative epicardial ultrasonography (ECUS) for quality assessment of coronary artery bypass graft anastomoses during coronary artery bypass grafting (CABG) has not occurred - presumably due to technological and practical challenges including the need to maintain stable and optimal acoustic contact between the ultrasound probe and the target without the risk of distorting the anastomosis

  • Several methods for quality assessment are in use, including intraoperative selective coronary angiography, transit-time flow measurement (TTFM), intraoperative fluorescence imaging and high-frequency epicardial ultrasonography (ECUS) [1–3]

  • 51 patients with 155 peripheral coronary anastomoses were available for analyses

Read more

Summary

Introduction

Widespread use of intraoperative epicardial ultrasonography (ECUS) for quality assessment of coronary artery bypass graft anastomoses during coronary artery bypass grafting (CABG) has not occurred - presumably due to technological and practical challenges including the need to maintain stable and optimal acoustic contact between the ultrasound probe and the target without the risk of distorting the anastomosis. Widespread use of intraoperative ECUS for quality assessment of coronary artery bypass graft anastomoses during CAGB procedures has not been adopted, presumably due to technological and practical challenges. Among these challenges are maintaining stable and optimal acoustic contact between the ultrasound probe and examining the anastomosis without the risk of distorting it. This device can be used for stabilizing the involved part of the myocardium on the contracting/beating heart and for positioning of the ultrasound transducer correctly for imaging of anastomoses in the longitudinal and transverse planes without deforming the anastomoses [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call