Abstract
Ordinal data in social science statistics are often modeled as discretizations of a multivariate normal vector. In contrast to the continuous case, where SEM estimation is also consistent under non-normality, violation of underlying normality in ordinal SEM may lead to inconsistent estimation. In this article, we illustrate how underlying non-normality induces bias in polychoric estimates and their standard errors. This bias is strongly affected by how we discretize. It is therefore important to consider tests of underlying multivariate normality. In this study we propose a parametric bootstrap test for this purpose. Its performance relative to the test of Maydeu-Olivares is evaluated in a Monte Carlo study. At realistic sample sizes, the bootstrap exhibited substantively better Type I error control and power than the Maydeu-Olivares test in ordinal data with ten dimensions or higher. R code for the bootstrap test is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.