Abstract
Using resolutions of singularities introduced by Cortez and a method for calculating Kazhdan-Lusztig polynomials due to Polo, we prove the conjecture of Billey and Braden characterizing permutations w with Kazhdan-Lusztig polynomial$ P_id,w(q)=1+q^h$ for some $h$. On démontre la conjecture de Billey et Braden sur les permutations w pour lesquelles le polynôme de Kazhdan-Lusztig $P_id,w(q)=1+q^h$ pour un entier $h$. On emploie une résolution des singularités présentées par Cortez et une méthode de Polo pour calculer ces polynômes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.