Abstract
A permutation $\pi$ is realized by the shift on $N$ symbols if there is an infinite word on an $N$-letter alphabet whose successive left shifts by one position are lexicographically in the same relative order as $\pi$. The set of realized permutations is closed under consecutive pattern containment. Permutations that cannot be realized are called forbidden patterns. It was shown in [J.M. Amigó, S. Elizalde and M. Kennel, $\textit{J. Combin. Theory Ser. A}$ 115 (2008), 485―504] that the shortest forbidden patterns of the shift on $N$ symbols have length $N+2$. In this paper we give a characterization of the set of permutations that are realized by the shift on $N$ symbols, and we enumerate them with respect to their length. Une permutation $\pi$ est réalisée par le $\textit{shift}$ avec $N$ symboles s'il y a un mot infini sur un alphabet de $N$ lettres dont les déplacements successifs d'une position à gauche sont lexicographiquement dans le même ordre relatif que $\pi$. Les permutations qui ne sont pas réalisées s'appellent des motifs interdits. On sait [J.M. Amigó, S. Elizalde and M. Kennel, $\textit{J. Combin. Theory Ser. A}$ 115 (2008), 485―504] que les motifs interdits les plus courts du $\textit{shift}$ avec $N$ symboles ont longueur $N+2$. Dans cet article on donne une caractérisation des permutations réalisées par le $\textit{shift}$ avec $N$ symboles, et on les dénombre selon leur longueur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.