Abstract

Quantitative inference from environmental contaminant data is almost exclusively from within the classic Neyman/Pearson (N/P) hypothesis-testing model, by which the mean serves as the fundamental quantitative measure, but which is constrained by random sampling and the assumption of normality in the data. Permutation/randomization-based inference originally forwarded by R. A. Fisher derives probability directly from the proportion of the occurrences of interest and is not dependent upon the distribution of data or random sampling. Foundationally, the underlying logic and the interpretation of the significance of the two models vary, but inference using either model can often be successfully applied. However, data examples from airborne environmental fungi (mold), asbestos in settled dust, and 1,2,3,4-tetrachlorobenzene (TeCB) in soil demonstrate potentially misleading inference using traditional N/P hypothesis testing based upon means/variance compared to permutation/randomization inference using differences in frequency of detection (Δf d). Bootstrapping and permutation testing, which are extensions of permutation/randomization, confirm calculated p values via Δf d and should be utilized to verify the appropriateness of a given data analysis by either model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call