Abstract
Permutation testing in linear models, where the number of nuisance coefficients is smaller than the sample size, is a well-studied topic. The common approach of such tests is to permute residuals after regressing on the nuisance covariates. Permutation-based tests are valuable in particular because they can be highly robust to violations of the standard linear model, such as non-normality and heteroscedasticity. Moreover, in some cases they can be combined with existing, powerful permutation-based multiple testing methods. Here, we propose permutation tests for models where the number of nuisance coefficients exceeds the sample size. The performance of the novel tests is investigated with simulations. In a wide range of simulation scenarios our proposed permutation methods provided appropriate type I error rate control, unlike some competing tests, while having good power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.