Abstract

The permutation-inversion symmetry group of C70 fullerite in its high-temperature phase is constructed with allowance for the rotation of its constituent molecules, and the local symmetry group of a rotating molecule in the crystal is identified. Irreducible representations of these groups are constructed that are compatible with the principle of wave-function symmetry with respect to permutations of identical nuclei. A group-theoretic classification is made of the quantum states of a rotating molecule and of the crystal in the high-temperature phase of C70 fullerite. Selection rules are derived for electronic, vibrational, and rotational spectra in terms of irreducible representations of the permutation-inversion symmetry group of the crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.