Abstract
We propose using a permutation test to detect discontinuities in an underlying economic model at a known cutoff point. Relative to the existing literature, we show that this test is well suited for event studies based on time‐series data. The test statistic measures the distance between the empirical distribution functions of observed data in two local subsamples on the two sides of the cutoff. Critical values are computed via a standard permutation algorithm. Under a high‐level condition that the observed data can be coupled by a collection of conditionally independent variables, we establish the asymptotic validity of the permutation test, allowing the sizes of the local subsamples to be either be fixed or grow to infinity. In the latter case, we also establish that the permutation test is consistent. We demonstrate that our high‐level condition can be verified in a broad range of problems in the infill asymptotic time‐series setting, which justifies using the permutation test to detect jumps in economic variables such as volatility, trading activity, and liquidity. These potential applications are illustrated in an empirical case study for selected FOMC announcements during the ongoing COVID‐19 pandemic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.