Abstract
Endogenously produced CO is an important dilator in newborn cerebrovascular circulation. CO dilates cerebral arterioles by activating Ca2+-activated K+ channels, but modulatory actions of other effectors and second messenger inputs are unclear. Specifically, the mechanisms behind the obligatory permissive roles of prostacyclin and NO are uncertain. Therefore, the present study was performed using acutely implanted, closed cranial windows in newborn pigs to address the hypothesis that the permissive roles of NO and prostacyclin in cerebrovascular dilation in response to CO involve a common mechanism. The NO donor sodium nitroprusside restored dilation in response to CO after inhibition of that dilation with the prostaglandin cyclooxygenase inhibitor indomethacin. The stable prostacyclin analog iloprost restored CO-induced dilation blocked by the NO synthase inhibitor Nomega-nitro-L-arginine. Restoration of dilation in response to CO by the cGMP-dependent phosphodiesterase inhibitor zaprinast and blockade of CO dilation by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazole-[4,3-a]quinoxalin-1-one (ODQ) suggests involvement of the cGMP/PKG pathway. Iloprost or the cAMP-dependent dilator isoproterenol restored dilation in response to CO after ODQ administration. However, CO-induced dilation blocked by the cGMP-dependent PKG inhibitor Rp-8-[(4-chlorophenyl)thio]-cGMPS triethylamine could not be reversed by administration of sodium nitroprusside, iloprost, or isoproterenol. Conversely, PKA inhibition did not block dilation in response to CO. Overall, data indicate that activation of PKG is the predominant mechanism of the permissive actions of NO and prostacyclin for CO-induced pial arteriolar dilation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.