Abstract

Federated learning is an emerging technology that solves the privacy problem of training data in multi-party machine learning. However, this technology is vulnerable to a series of system security problems. In this letter, we leverage Hyperledger Fabric permissioned blockchain architecture to build a secure and reliable federated learning platform across multiple data owners, where individual local updates are encrypted based on threshold homomorphic encryption and then recorded on a distributed ledger. The security analysis shows that our solution can effectively deal with the existing privacy and security issues in the federated learning system. The numerical results show that the scheme is feasible and efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.